Arjun Bhattacharya
Department of Epidemiology, Division of Cancer Prevention and Population Sciences
Research Interests
Dr. Bhattacharya explores the biological mechanisms contributing to cancer risk and outcomes and developmental phenotypes. He develops fully open and accessible computational tools based on statistical and epidemiological principles to analyze large genetic, functional genomic, and clinical datasets through international collaborations. Dr. Bhattacharya’s first main goal is to understand the biological and environmental contributions to cancer risk, outcomes, and disparities. He studies the genetic regulation of the transcriptome, how this is modified by the environment, and how this affects cancer risk, mortality, recurrence, and tumor progression and endophenotypes. He focuses on how genetic variants influence alternative splicing patterns and isoform expression by analyzing large molecular datasets collected from diverse populations. A second goal is to generate and analyze large-scale genetic and molecular datasets that can help the research community understand molecular regulation during the developmental window. He focuses on the genomic regulation within the placenta, the master regulator of the intrauterine environment. Through international collaborations, he seeks to understand the influence of genetic and epigenetic regulation in the placenta on developmental programming and its effects on early-life outcomes.
Education & Training
Degree-Granting Education
2020 | University of North Carolina, Chapel Hill, NC, USA, PHD, Biostatistics |
2015 | University of North Carolina, Chapel Hill, NC, USA, BS, Mathematical Decision Sciences and Biology |
Selected Publications
Peer-Reviewed Articles
- Bhattacharya A, Vo DD, Jops C, Kim M, Wen C, Hervoso JL, Pasaniuc B, Gandal MJ. Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for neuropsychiatric disorders in the human brain. Nat Genet 55(12):2117-2128, 2023. e-Pub 2023. PMID: 38036788.
- Bhattacharya A, Hirbo JB, Zhou D, Zhou W, Zheng J, Kanai M, the Global Biobank Meta-analysis Initiative, Pasaniuc , Gamazon ER, Cox NJ. Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative. Cell Genomics 2(10), 2022.
- Zhou W, Kanai M, Wu KH, Rasheed H, Tsuo K, Hirbo JB, Wang Y, Bhattacharya A, Zhao H, Namba S, Surakka I, Wolford BN, Lo Faro V, Lopera-Maya EA, Läll K, Favé MJ, Partanen JJ, Chapman SB, Karjalainen J, Kurki M, Maasha M, Brumpton BM, Chavan S, Chen TT, Daya M, Ding Y, Feng YA, Guare LA, Gignoux CR, Graham SE, Hornsby WE, Ingold N, Ismail SI, Johnson R, Laisk T, Lin K, Lv J, Millwood IY, Moreno-Grau S, Nam K, Palta P, Pandit A, Preuss MH, Saad C, Setia-Verma S, Thorsteinsdottir U, Uzunovic J, Verma A, Zawistowski M, Zhong X, Afifi N, Al-Dabhani KM, Al Thani A, Bradford Y, Campbell A, Crooks K, de Bock GH, Damrauer SM, Douville NJ, Finer S, Fritsche LG, Fthenou E, Gonzalez-Arroyo G, Griffiths CJ, Guo Y, Hunt KA, Ioannidis A, Jansonius NM, Konuma T, Lee MTM, Lopez-Pineda A, Matsuda Y, Marioni RE, Moatamed B, Nava-Aguilar MA, Numakura K, Patil S, Rafaels N, Richmond A, Rojas-Muñoz A, Shortt JA, Straub P, Tao R, Vanderwerff B, Vernekar M, Veturi Y, Barnes KC, Boezen M, Chen Z, Chen CY, Cho J, Smith GD, Finucane HK, Franke L, Gamazon ER, Ganna A, Gaunt TR, Ge T, Huang H, Huffman J, Katsanis N, Koskela JT, Lajonchere C, Law MH, Li L, Lindgren CM, Loos RJF, MacGregor S, Matsuda K, Olsen CM, Porteous DJ, Shavit JA, Snieder H, Takano T, Trembath RC, Vonk JM, Whiteman DC, Wicks SJ, Wijmenga C, Wright J, Zheng J, Zhou X, Awadalla P, Boehnke M, Bustamante CD, Cox NJ, Fatumo S, Geschwind DH, Hayward C, Hveem K, Kenny EE, Lee S, Lin YF, Mbarek H, Mägi R, Martin HC, Medland SE, Okada Y, Palotie AV, Pasaniuc B, Rader DJ, Ritchie MD, Sanna S, Smoller JW, Stefansson K, van Heel DA, Walters RG, Zöllner S, Biobank of the Americas, Biobank Japan Project, BioMe, BioVU, CanPath - Ontario Health Study, China Kadoorie Biobank Collaborative Group, Colorado Center for Personalized Medicine, deCODE Genetics, Estonian Biobank, FinnGen, Generation Scotland, Genes & Health Research Team, LifeLines, Mass General Brigham Biobank, Michigan Genomics Initiative, National Biobank of Korea, Penn Medicine. Global Biobank Meta-analysis Initiative: Powering genetic discovery across human disease. Cell Genom 2(10):100192, 2022. e-Pub 2022. PMID: 36777996.
- Bhattacharya A, Freedman AN, Avula V, Harris R, Liu W, Pan C, Lusis AJ, Joseph RM, Smeester L, Hartwell HJ, Kuban KCK, Marsit CJ, Li Y, O'Shea TM, Fry RC, Santos HP. Placental genomics mediates genetic associations with complex health traits and disease. Nat Commun 13(1):706, 2022. e-Pub 2022. PMID: 35121757.
- Patel A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI, Bhattacharya A. Gene-Level Germline Contributions to Clinical Risk of Recurrence Scores in Black and White Patients with Breast Cancer. Cancer Res 82(1):25-35, 2022. e-Pub 2021. PMID: 34711612.
- Bhattacharya A, Li Y, Love MI. MOSTWAS: Multi-Omic Strategies for Transcriptome-Wide Association Studies. PLoS Genet 17(3):e1009398, 2021. e-Pub 2021. PMID: 33684137.
- Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A framework for transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biol 21(1):42, 2020. e-Pub 2020. PMID: 32079541.